Artificial neural networks for non-stationary time series
نویسندگان
چکیده
The use of Artificial Neural Networks (ANN) has received increasing attention in the analysis and prediction of financial time series. Stationarity of the observed financial time series is the basic underlying assumption in the practical application of ANN on financial time series. In this paper, we will investigate whether it is feasible to relax the stationarity condition to non-stationary time series. Our result discusses the range of complexities caused by non-stationary behavior and finds that overfitting by ANN could be useful in the analysis of such non-stationary complex financial time series.
منابع مشابه
Application of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملAnalysis of Switching Dynamics with Competing Neural Networks
We present a framework for the unsupervised segmentation of time series. It applies to non-stationary signals originating from di erent dynamical systems which alternate in time, a phenomenon which appears in many natural systems. In our approach, predictors compete for data points of a given time series. We combine competition and evolutionary inertia to a learning rule. Under this learning ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 61 شماره
صفحات -
تاریخ انتشار 2004